Online versions of scientific journals Current user: guest        
Show Left Menu
Temporary Collection
Abstract of article

 -  Vol. 50, No. 2, March-April 2005, pp. 299-302 Help

[ Previous / Next Abstract | Issue Contents | Bottom of Page ] Delete from Cart Add to Cart Delete from Collection Add to Collection

Product Price:  30.00 USD;  Product Discount:  0.0%;

Full Text: [PDF (75Kb)] |  
Study of the Electrophysical Properties of Listeria monocytogenes Cells during Interaction with Monoclonal Antibodies
V. D. Bunin1, O. V. Ignatov2, O. I. Guliy2, A. G. Voloshin1, L. A. Dykman2, D. O'Neil3,4, and D. Ivnitski4
1State Research Center for Applied Microbiology, Obolensk, Moscow Region, Russia
2Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, 410049 Russia
3CRADA International Inc., Norcross, USA
4New Mexico Institute of Mining and Technology / Institute for Engineering Research and Applications, Albuquerque, NM 87106, USA

Received July 10, 2003
Key words: Listeria, electrooptical response, electric-field orientation, antibody colloidal gold conjugates, microbial identification.

The electrooptical properties (i.e., the profile of the changes in the optical density of the cell suspension upon cell orientation in an electric field varied in frequency from 10 to 500 kHz) of the cells of a Listeria monocytogenes vaccine strain were found to change upon interaction with specific monoclonal antibodies. A still more pronounced but opposite electrooptical response (i.e., a change in the dielectric properties) was observed when the cells were treated with colloidal gold conjugates of the same antibodies. The specific response of Listeria cells to antibodies was attenuated but still reliably discerned in a mixed suspension (also containing similarly shaped Escherichia coli and Azospirillum brasilense), demonstrating the feasibility of microbial identification by the electrooptical assay with specific antibodies.


  1. A. K. Deisingh and M. Thompson, Analyst 127, 567 (2002).
  2. D. Walt and D. R. Franz, Anal. Chem. 12, 739A (2000).
  3. R. A. Greenfield, D. A. Drevets, L. J. Machado, et al., Amer. J. Med. Sci. 323, 299 (2002).
  4. N. J. Beeching, D. A. B. Dance, A. R. O. Miller, and R. C. Spencer, British Med. J. 324, 336 (2002).
  5. R. Roffey, K. Lantorp, A. Tegnell, and F. Elgh, Clin. Microbiol. Infect. 8, 522 (2002).
  6. D. Ivnitski, E. Wilkins, H. T. Tien, and A. Ottova, Electrochemistry Communication 2, 457 (2000).
  7. D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, Biosensors & Bioelectronics 14, 599 (1999).
  8. D. Ivnitski, T. Wolf, B. Solomon, et al., Bioelectrochem. Bioenerg. 45, 27 (1998).
  9. D. Ivnitski and J. Rishpon, Biosensors and Bioelectronics 11, 409 (1996).
  10. A. I. Miroshnikov, V. M. Fomchenkov, and A. Yu. Ivanov, Electrophysical Analysis and Cell Separation (Nauka, Moscow, 1986) [in Russian].
  11. J. Gimsa and D. Wachner, J. Biophys. 75, 1107 (1998).
  12. V. D. Bunin and A. G. Voloshin, J. Colloid Interface Sci. 180, 122 (1996).
  13. V. D. Bunin, A. G. Voloshin, Z. F. Bunin, V. A. Shmelev, Biotechnol. Bioenginer. 51, 720 (1996).
  14. O. V. Ignatov, O. I. Guliy, S. Yu. Shchyogolev, et al., FEMS Microbiol. Lett. 214, 81 (2002).
  15. O. V. Ignatov, S. Yu. Shchyogolev, V. D. Bunin, and V. V. Ignatov, in Biotransformations: Bioremediation Technology for Health and Environment Protection, Ed. by Ved Pal Singh, and R. D. Stapleton (Elsevier Science, The Netherlands, 2001), Vol. 36, p. 403.
  16. O. I. Guliy, O. V. Ignatov, S. Yu. Shchyogolev, et al., Anal. Chim. Acta 462, 165 (2002).
  17. G. Frens, Nature Phys. Sci. 241, 20 (1973).
  18. J. De Mey and M. Moeremans, Advanced Techniques in Biological Electron Microscopy III, Ed. by J. K. Koehler (Springer-Verlag, Berlin, 1986).
  19. L. A. Dykman and V. A. Bogatyrev, Biokhimiya 62, 350 (1997).

PII: S000635090502017X

[ Previous / Next Abstract | Issue Contents | Top of Page ]